Abstract

Changes in thyroid hormone metabolism in the low-3,5,3'-triiodothyronine (T3) syndrome cannot be fully explained in all conditions by a decrease in 5'-deiodinase activity. Recent observations showed that in rat hepatocytes iodothyronines are taken up by an active transport mechanism. To investigate whether regulation, i.e., inhibition of active transmembraneous transport for iodothyronines in humans may contribute to the generation of the low-T3 syndrome, tracer thyroxine (T4) and T3 kinetic studies were performed in 10 obese subjects before and after 7 days on a 240 kcal diet. Kinetics analyses were performed according to a three-pool model of distribution and metabolism for both T4 and T3. For T4 kinetics, during caloric deprivation serum total T4 and plasma pool did not change and production rate and metabolic clearance rate (MCR) were significantly lower. Despite a significantly higher serum free T4, the mass transfer rate to the rapidly equilibrating pool (REP) and the slowly equilibrating pool (SEP) diminished significantly, leading to smaller tissue pools. For T3 kinetics, both serum total T3, free T3, plasma pool, and production rate diminished significantly, while MCR remained unchanged. Mass transfer rates to the REP and the SEP were lowered by approximately 50%, leading to smaller tissue pools. These changes cannot be fully explained by a similar decrease of serum free T3 (only 25%), indicating a diminished transport efficiency for T3. In conclusion, during caloric restriction, transport of T4 and T3 into tissues is diminished, and this phenomenon is much more pronounced for T4 than for T3.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.