Abstract

The effects of calcium (Ca) on a hyperkalemic cardioplegic solution for continuous cardioplegia were examined in an isolated perfused working rat heart model. The coronary arteries were perfused with a modified Krebs-Henseleit bicarbonate buffer (K-H) solution, containing various concentrations of Ca (0.1, 0.6, 1.2, and 2.5 mmol/l) and a high concentration of potassium (20 mmol/l), for 180 min, after which cardiac arrest was induced at 37 degrees C for 180 min. Cardiac function and creatine kinase (CK) were measured. In the control group, K-H solution was infused in place of the cardioplegic solution, and cardiac arrest was not induced. No significant differences were observed between the groups infused with the K-H solution containing Ca concentrations of 0.6, 1.2, and 2.5 mmol/l in the percent recovery of aortic flow (82.1 +/- 2.9%, 80.6 +/- 2.0%, and 71.5 +/- 3.7% (mean +/- SEM) respectively) or in the recovery of other indices of cardiac function, or in CK leakage. There were also no significant differences in the recovery of cardiac function and CK leakage between these groups and the control group. In the Ca 0.1 mmol/l group, however, the characteristic Ca paradox was observed. These findings suggest that if the Ca concentration in a cardioplegic solution is higher than 0.6 mmol/l during continuous cardioplegia, excellent cardioprotective effects will be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call