Abstract
The purpose of the present study was to investigate the role of endoplasmic reticulum (ER)‑resident molecular chaperone proteins to identify whether these proteins were involved in post‑traumatic stress disorder (PTSD). The present study detected changes of calreticulin (CRT), calnexin (CNX) and ERp57 in the amygdala of rats, which may with aim of providing a novel insight into the modulation effect of amygdala in PTSD. Single‑prolonged stress (SPS) was applied to create the models of PTSD in rats. The expression levels of CRT, CNX and ERp57 were examined using immunohistochemistry or immunofluorescence, western blot analysis and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The results showed that SPS induced significant changes in CRT, CNX and ERp57 expression levels. Furthermore, the expression levels of CRT, CNX and ERp57 were significantly upregulated when compared to that in the control group after SPS exposure by western blot analysis (P<0.05). RT‑qPCR analysis supported these results, indicating an upregulation of mRNA expression level. Taken together, the present findings suggest that SPS may induce changes to the expression of CRT, CNX and ERp57 in the amygdala of rats. The present study provides an insight into the effects of ER‑resident molecular chaperones in the amygdala participating in PTSD, and provides the experimental basis and a mechanism for the pathophysiology of PTSD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.