Abstract
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA. These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.