Abstract
Nowadays, high dielectric materials are important materials in microwave electronic applications due to its properties that can provide high frequency range of an antenna. Barium Zinc Tantalate (BZT) is a complex perovskite structure that can produce high quality factor, Q. In this research, the effect of calcinations temperatures on phase formation, density and morphology of BZT powders were investigated. Based on the DTA result, the range of calcinations temperatures to be investigated were between 750°C to 1250°C. Results show that the maximum density of BZT occurred at 1150°C with 99.74% theoretical density. Samples calcined at below 1100°C still containing their raw materials such as BaCO3, ZnO and Ta2O5. The pure phase of BZT was formed at 1150°C when calcined for 1 hour. The lattice distortion of BZT increased when the calcinations temperature increased between 1000°C to 1150°C. The calcined powders show almost spherical morphology and agglomerated. The particle sizes of BZT increased from 0.716μm to 0.258μm when the temperature increased from 750°C to 1200°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.