Abstract

Caffeine elicits physiological responses in a variety of cell types by triggering the mobilization of Ca2+ from intracellular organelles. Here we investigate the effects of caffeine on intracellular Ca2+ concentration ([Ca2+]i) and ionic currents in anterior pituitary cells (GH3) cells. Caffeine has a biphasic effect on Ca(2+)-activated K+ current [IK(Ca)]: it induces a transient increase superimposed upon a sustained inhibition. While the transient increase coincides with a rise in [Ca2+]i, the sustained inhibition of IK(Ca) is correlated with a sustained inhibition of the L-type Ca2+ current. The L-type Ca2+ current is also inhibited by other agents that mobilize intracellular Ca2+, including thyrotropin releasing hormone (TRH) and ryanodine, but in a matter distinct from caffeine. Unlike the caffeine effect, the TRH-induced inhibition "washes-out" under whole-cell patch-clamp conditions and is eliminated by intracellular Ca2+ chelators. Likewise, the ryanodine-induced inhibition desensitizes while the caffeine-induced inhibition does not. Simultaneous [Ca2+]i and Ca2+ current measurements show that caffeine can inhibit Ca2+ current without changing [Ca2+]i. Single-channel recordings show that caffeine reduces mean open time without affecting single-channel conductance of L-type channels. Hence the effects of caffeine on ion channels in GH3 cells are attributable both to mobilization of intracellular Ca2+ and to a direct effect on the gating of L-type Ca2+ channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call