Abstract

Colorectal cancer is a major cause of morbidity and mortality throughout the world. Issues related to the role of diet in cancer prevention and treatment are featured each year, and, in this context, consumption of hydroxycinanmic acids is associated with reduced risk of chronic diseases including cancer. Therefore, the aim of this study was to evaluate the cellular uptake of caffeic and 5-caffeoylquinic acids and their effects on cell viability, cell cycle, and apoptosis in human colon adenocarcinoma cells (HT-29). HT-29 cells were incubated with different concentrations of caffeic and 5-caffeoylquinic acids (1.25 µM to 80.0 µM) from 0.5 to 96 h. Cellular uptake was analyzed by HPLC and LCMS. Cell viability, cell cycle, and apoptosis was measured, respectively, using MTT method and flow cytometry. Caffeic and 5-caffeoylquinic acids are absorbed, isomerized, and metabolized by HT-29 cells. Both compounds were able to reduce HT-29 cell viability, promoting specific changes in the cell cycle and increased the apoptosis rate. Caffeic acid and 5-caffeoylquinic acid showed inhibitory effects on cell growth, suggesting a modulation of the cell cycle with an increase in apoptosis in human colon adenocarcinoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.