Abstract

Cadmium (Cd) is a naturally occurring toxic heavy metal that adversely affects plant germination, growth, and development. While the effects of Cd have been described on many crop species including rice, maize, wheat and barley, few studies are available on cadmium's effect on Tartary buckwheat which is a traditional grain in China. We examined nine genotypes and found that 30 µM of Cd reduced the root length in seedlings by between 4 and 44% and decreased the total biomass by 7 to 31%, compared with Cd-free controls. We identified a significant genotypic variation in sensitivity to Cd stress. Cd treatment decreased the total root length and the emergence and growth of lateral roots, and these changes were significantly greater in the Cd-sensitive genotypes than in tolerant genotypes. Cd resulted in greater wilting and discoloration in sensitive genotypes than in tolerant genotypes and caused more damage to the structure of root and leaf cells. Cd accumulated in the roots and shoots, but the concentrations in the sensitive genotypes were significantly greater than in the more tolerant genotypes. Cd treatment affected nutrient uptake, and the changes in the sensitive genotypes were greater than those in the tolerant genotypes, which could maintain their concentrations closer to the control levels. The induction of SOD, POD, and CAT activities in the roots and shoots was significantly greater in the tolerant genotypes than in the sensitive genotypes. We demonstrated that Cd stress reduced root and shoot growth, decreased plant biomass, disrupted nutrient uptake, altered cell structure, and managed Cd-induced oxidative stress differently in the sensitive and tolerant genotypes of Tartary buckwheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.