Abstract
The effects of cadmium stress on growth, morphology, and protein expression were investigated in Rhodobacter capsulatus B10 using two-dimensional polyacrylamide gel electrophoresis and a scanning electron microscope with an energy dispersive X-ray spectrometer. The bacterium grew in the presence of 150 microM CdCl2 and highly induced heat-shock proteins (GroEL and Dnak), S-adenosylmethionine synthetase, ribosomal protein S1, aspartate aminotransferase, and phosphoglycerate kinase. Interestingly, the ribosomal protein S1 was proportionally expressed as the amount of cadmium in the medium, suggesting that S1 may be required for the repair of cadmium-mediated cellular damage. On the other hand, we identified five cadmium-binding proteins: 2-methylcitrate dehydratase, phosphate periplasmic binding protein, inosine-5'-monophosphate dehydrogenase/guanosine-5'-monophosphate reductase, inositol monophosphatase, and lytic murein transglycosylase. The cadmium-treated cells had a filamentous structure and contained less phosphorous than the untreated cells. We propose that these characteristics of the cadmium-treated cells may be due to the inactivation of the phosphate periplasmic binding protein and lytic murein transglycosylase by cadmium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.