Abstract

Understanding the cause and effect relationship between stressors and biota is crucial for the effective management, restoration and preservation of aquatic systems. The objective of the present study was to assess the effects of five Cd concentrations on tropical periphyton community growth, Cd accumulation kinetics, as well as the effects of Cd on diatom community structure and composition. Natural periphyton communities were transferred to artificial stream chambers and exposed to Cd concentrations of 0.005, 0.01, 0.03, 0.05 and 0.1mg.L−1. Metal accumulation (total and intracellular) in biofilms, dry weight and ash-free dry mass, growth rate, algal cell density and diatom community composition were analysed on samples collected after 1, 2 and 4weeks of colonization. Periphyton growth and development were significantly lowered by Cd concentrations>0.03mg.L−1. High Cd accumulation capacity by periphyton was demonstrated with total and intracellular Cd content in biofilms reflecting the effects of concentrations of Cd in the culture media and exposure duration. Total and intracellular Cd content generally increased in treatments in the order 0.005<0.01<0.03<0.05<0.1mg.L−1 at any sampling time with increasing level of accumulated Cd with duration of exposure in all the systems. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum and reduction of sensitive ones like Diatoma vulgare, Navicula viridula and Navicula cryptocephala), decreases in species richness and diversity and morphological alterations (deformities) of diatom cells with increasing Cd concentration and exposure duration were observed. The results give valuable information on Cd impact of freshwater biofilms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call