Abstract

Cadmium (Cd) has been shown to bind to the human estrogen receptor (ER), yet studies on Cd's estrogenic effects have yielded inconsistent results. In this study, we investigated the effects of Cd on DNA synthesis and its simultaneous effects on both genomic (mediated by nuclear ER (nER)) and non-genomic (mediated by membrane-bound ER (mER)) signaling in human breast cancer derived T47D cells. No effects on DNA synthesis were observed for non-cytotoxic concentrations of CdCl 2 (0.1–1000 nM), and Cd did not increase progesterone receptor (PgR) or pS2 mRNA levels. However, Cd stimulated phosphorylation of ERK1/2 MAPK, detectable following 10 min and 18 h of treatment. The sustained Cd-induced ERK1/2 phosphorylation was inhibited by the ER antagonist ICI 182,780, suggesting the involvement of ER. In addition, Cd enhanced DNA synthesis and pS2 mRNA levels in estrogen (10 pM estradiol) treated T47D cells. The MEK1/2 specific inhibitor U0126 blocked DNA synthesis stimulated by estradiol (E2) and the E2–Cd mixtures. These findings indicate that the ERK1/2 signaling is critical in E2-related DNA synthesis. The sustained ERK1/2 phosphorylation may contribute to the Cd-induced enhancement of DNA synthesis and pS2 mRNA in mixture with low-concentration E2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.