Abstract
We examined the influence of cadmium (Cd) exposure on nitrate assimilation in bean ( Phaseolus vulgaris L. cv Morgane). Bean plants were submitted to either a short- (24 h) or long-term (7 d) supply of Cd in the nutrient solution. Addition of Cd decreases very significantly both the water and nitrate uptake of the treated plants when compared to untreated plants. Cadmium also induces a decrease in nitrate reductase (NR, EC 1.6.6.1) activation state after 24 h of exposure whereas, after 7 d, NR activation state was similar to that of the control bean plants. On the other hand, the level of NR protein was decreased by about 80 % after 7 d of Cd exposure and by only 15 % 1 d after Cd addition. We then investigated the in vitro effect of Cd on NR catalytic activities and inactivation by phosphorylation. The molybdenum cofactor-binding domain of NR seemed to be the most affected by Cd which did not interfere with the in vitro inactivation process of NR by MgATP. Glutamate synthase and NR activities were more inhibited by supply of Cd in the long-term experiment than the activities of nitrite reductase and glutamine synthetase. Conversely, an increase in glutamate dehydrogenase activity was observed in parallel with an increase in ammonium concentration. It thus appears that Cd treatment induces both rapid and long-term changes in the activity of the enzymes involved in nitrate assimilation, partly in response to reduced water and nutrient uptake. Moreover we have also shown that Cd itself can have a direct effect on the activities of these enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Plant Physiology and Biochemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.