Abstract

Endothelial progenitor cells (EPCs) are bone marrow-derived cells that have the propensity to differentiate into mature endothelial cells (ECs). The transplantation of EPCs has been shown to enhance in vivo postnatal neo-vasculogenesis, as well as repair infarcted myocardium. Via the whole-cell patch clamp technique, numerous types of ion channels have been detected in EPCs, including the inward rectifier potassium channel (IKir), Ca2+-activated potassium channel (IKCa), and volume-sensitive chloride channel, but their influence on the differentiation of EPCs has yet to be characterized. The present study was designed to investigate: (1) which ion channels have the most significant impact on the differentiation of EPCs; (2) what role ion channels play in the functional development of EPCs; (3) the mRNA and protein expression levels of related ion channel subunits in EPCs. In our study, EPCs were obtained from the peripheral blood of healthy adults and cultured with endothelial growth factors. When EPCs differentiate into mature ECs, they lose expression of the stem cell/progenitor marker CD133, as analyzed by flow cytometry (0.44±0.20 %). However, treatment with the potassium channel inhibitor, tetraethylammonium (TEA) results in an increase in CD133+ cells (25.50±7.55 %). In a functional experiment, we observed a reduction in the capacity of TEA treated ECs (differentiated from EPCs) to form capillary tubes when seeded in Matrigel. At the mRNA and protein levels, we revealed several K+ subtypes, including KCNN4 for IKCa, KCNNMA1 for BKCa and Kir3.4 for IKir. These results demonstrate for the first time that potassium channels play a significant role in the differentiation of EPCs. Moreover, inhibition of potassium channels may depress the differentiation of EPCs and the significant potassium channel subunits in EPCs appear to be IKCa, BKCa and Kir3.4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.