Abstract

The effect of various metals on uridine diphosphate (UDP)-glucuronyltransferase and beta-glucuronidase activities in rat liver microsomes was investigated. The presence of Mn2+, Cd2+, Zn2+, V5+, Ni2+, Co2+, Cu+ or Ca2+ (20 microM) in the enzyme reaction mixture did not cause a significant alteration of UDP-glucuronyltransferase activity in hepatic microsomes. Of these metals, Zn2+ and Cd2+ (20 microM) caused a remarkable increase in hepatic microsomal beta-glucuronidase activity. Appreciable effects of Zn2+ and Cd2+ on beta-glucuronidase activity were seen at 5.0 microM, and the effects were saturated at 50 microM. Ca2+ (5.0-50 microM) and/or the Ca2(+)-binding protein regucalcin (2.0 microM) did not have an appreciable effect on UDP-glucuronyltransferase and beta-glucuronidase activities in hepatic microsomes. Thus, Zn2+ and Cd2+ uniquely increased beta-glucuronidase activity. The Zn2(+)- and Cd2(+)-induced increase in beta-glucuronidase activity was completely reversed by the presence of an SH group-protecting reagent (dithiothreitol). The response of the microsomal enzyme to Zn2+ and Cd2+ (20 microM) was no longer seen after treatment with 0.2% Triton X-100 [polyoxyethylene(10)octylphenyl ether], indicating that the stimulation by these metals is dependent on membrane association. The present study suggests that, of various metals tested, Zn2+ and Cd2+ can uniquely increase hepatic microsomal beta-glucuronidase activity and that their effect is based on binding to membranous SH groups, beside the enzyme protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.