Abstract

1. To elucidate the mechanisms regulating the release of striatal dopamine and its precursor, 3,4-dihydroxyphenylalanine (DOPA), we determined the effects of various Ca2+ channel antagonists, an N-type Ca2+ channel antagonist, omega-conotoxin GVIA, a P-type Ca2+ channel antagonist, omega-agatoxin IVA, and a Q-type Ca2+ channel antagonist, omega-conotoxin MVIIC, on the basal and Ca2+- and K+-evoked release of striatal dopamine and DOPA, by use of in vivo microdialysis. 2. Omega-conotoxin GVIA strongly inhibited striatal basal dopamine release (IC50 = 0.48 nM), whereas this toxin only weakly modulated basal striatal DOPA release (IC50 = 9.55 nM). Neither omega-agatoxin IVA nor omega-conotoxin MVIIC affected the basal striatal release of dopamine and DOPA. 3. Omega-conotoxin GVIA strongly inhibited Ca2+-evoked striatal dopamine release (IC50 = 0.40 nM), whereas Ca2+-evoked striatal DOPA release only was weakly modulated (IC50 = 10.51 nM). Neither omega-agatoxin IVA nor omega-conotoxin MVIIC affected the Ca2+-evoked release of striatal dopamine and DOPA. 4. Both omega-agatoxin IVA and omega-conotoxin MVIIC inhibited the K+-evoked release of striatal dopamine (IC50 of omega-agatoxin IVA = 2.65 nM; IC50 of omega-conotoxin MVIIC = 12.54 nM) and DOPA (IC50 of omega-agatoxin IVA = 0.15 nM; IC50 of omega-conotoxin MVIIC = 3.05 nM), whereas omega-conotoxin GVIA had no effect on the K+-evoked release of striatal dopamine and DOPA. 5. An increase in the extracellular Ca2+ and K+ concentrations (Ca2+- and K+-evoked stimulation) did not affect tyrosine hydroxylase activity in vivo. 6. These findings suggest that striatal DOPA release is neurotransmitter-like and that, unlike the mechanisms of striatal dopaminergic transmission, this striatal DOPA transmission is at least partly regulated by voltage-sensitive Ca2+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.