Abstract

Two types of transglutaminases (TGases), Ca(2+)-dependent TGase derived from guinea pig liver (GTGase) and Ca(2+)-independent TGase derived from a variant of Streptoverticillium mobaraense (MTGase), were used to study the cross-linking of soybean 11S globulin (glycinin). The effects of sulfhydryl reductant (dithiothreitol, DTT) and Ca(2+) on the conformation and TGase-catalyzed polymerization of glycinin were investigated. The conformational change of glycinin was probed by spectral methods. The degree of cross-linking and the polymer (aggregate) formation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and dynamic light scattering, respectively. Addition of DTT stimulated the TGase-catalyzed cross-linking reactions without destroying the secondary and tertiary structure of glycinin but did not influence the polymer or aggregate formation. It was found that Ca(2+) caused the formation of larger size polymers at lower concentrations, while it suppressed the polymerization at higher concentrations. In addition, the cross-linking behaviors of glycinin were shown to be different between MTGase- and GTGase-catalyzed systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call