Abstract

The study reports the effects of Ca and Na acetates on the transformation of nitrogen species during sewage sludge pyrolysis. Sludge samples, with or without acetates, were pyrolysed in a fix-bed reactor at 150–550 °C, and the nitrogen species in the pyrolysis products (char, tar, and gas) were characterised and quantified. Ca and Na acetates distinctly affect nitrogen transformation during sludge pyrolysis, which is ascribable to their different catalytic activities for the decomposition of nitrogen species in sludge. The addition of Ca acetate is found to increase nitrogen retention in char and reduce the formation of nitrogen species in tar, which is mainly due to the suppressed decomposition of protein-N as well as the promoted formation of stable nitrogen species in char. On the other hand, the addition of Na acetate enhances the decomposition of nitrogen species in sludge, such as protein- and inorganic-N. The levels of both Ca and Na acetates are significantly reduced in the nitrogen-containing gas emissions because acetone is produced when acetates are heated, and acetone readily reacts with NH3 to produce binary clusters or amines. Our results show that acetate addition is an important strategy for the reduction of NH3 emission during sludge pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.