Abstract

In this work, LiCoO2(LCO) composite electrodes were coated by fullerene C60 thin film with different thickness of 60, 100 and 200 nm using a plasma thermal evaporation technique. The surface morphology of bare and coated samples was observed by scanning electron microscope (SEM). The electrochemical characteristics of the coated electrodes as cathode materials in Lithium-Ion Batteries (LIB)were investigated by a galvanostatic charge-discharge test at various C-rates between 3.0 and 4.5 V and compared with those of uncoated samples. An improvement of the performances of the coated electrodes in terms of higher initial coulombic efficiency, higher capacity retention and better rate capability was shown by the 60 nm thick C60 coated LiCoO2 electrodes. It can be said that the thin C60 coating layer can minimize the dissolution of Co from the electrode to the electrolyte. As the thickness of coating layer was increased, the coated electrodes show a more severe capacity fade due to longer Li-ion diffusion path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.