Abstract

AbstractA combustion synthesis methodology for the preparation of perovskite Li3xLa1/3‐xTaO3 lithium‐ion conductors with x = 0.033 is presented. Bulk ceramic specimens were sintered under combinations of burial powder and cover crucibles to provide different lithium vapor overpressure conditions. A maximum total lithium ion conductivity of 6 × 10‐6 S cm‐1 at room temperature was found for the pellet covered by a crucible whose lip was sealed using parent powder (moderate overpressure), with agreement to the maximum in the intergranular ion conductivity. Intragranular conductivity was maximized at the low overpressure condition. The trend in ion conductivity was found to correspond to the lithium content in the samples through a combination nuclear reaction analysis and energy dispersive X‐ray spectroscopy phase constitution measurements. The mechanism impacting ion conductivity was determined to be changes in the amount of LaTaO4 secondary phase as driven by the processing conditions during sintering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.