Abstract
The stabilization limits of v-flame and conical flames are investigated in normal gravity (+g) and reversed gravity (upside-down burner, −g) to compare with observations of flame stabilization during microgravity experiments. The results show that buoyancy has the most influence on the stabilization of laminar v-flames. Under turbulent conditions, the effects are less significant. For conical flames stabilized with a ring, the stabilization domain of the +g and −g cases are not significantly different. Under reversed gravity, both laminar v-flames and conical flames show flame behaviors that were also found in microgravity. The v-flames reattached to the rim and the conical flame assumed a top-hat shape. One of the special cases of −g conical flame is the buoyancy-stabilized laminar flat flame that is detached from the burner. This flame implies a balance between the flow momentum and buoyant forces. The stretch rates of these flames are sufficiently low (< 20 s −1) such that the displacement speeds S L are almost equal to the laminar burning speed S L 0. An analysis based on evaluating the Richardson number is used to determine the relevant parameters that describe the buoyancy/momentum balance. A perfect balance i.e. Ri = 1 can be attained when the effect of heat loss from the flame zone is low. For the weaker lean cases, our assumption of adiabaticity tends to overestimate the real flame temperature. This interesting low-stretch laminar flame configuration can be useful for fundamental studies of combustion chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.