Abstract

High-rise wooden buildings are increasing in popularity, and they typically include cross-laminated timber in the structure. Taller buildings result in higher loads on the junctions lower down in the building, which are suggested in the literature to negatively affect the sound insulation. This study involved measurement of the vibration reduction index in four different CLT buildings, varying in height and junction details. A total of 12 junctions were measured at both high and low levels in the buildings. Among these, 10 junctions had resilient interlayers with different stiffnesses dependent on the designed quasi-permanent load, while 2 junctions lacked resilient interlayers. The results indicated that the vibration reduction index decreases lower down in the building mainly for the Wall–Wall path. The findings were consistent for all measured junctions above 400 Hz for the Wall–Wall path and for the majority of the measurements of the remaining frequency range, 400 Hz and below. The observed difference in the vibration reduction index could significantly impact the final result if a high-rise building has several flanking paths that affect the sound insulation between two apartments, and this needs to be considered during the design phase. Similar effects were shown for buildings both with and without resilient interlayers in the junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.