Abstract

Two-dimensional materials provide with ability to control their properties with a number of methods. One of such methods is using strain and compression. In this work, we investigated the influence of locally induced strain through bubbles in thin ferromagnetic CrBr3 using low-temperature magnetic force microscopy. As a result, domain pinning and higher coercive and saturation fields were observed in the bubble. In addition, nontrivial spin arrangements are allowed to take place in a non-homogeneously strained area, leading to different responses to the external magnetic field in comparison to a non-strained region. Finally, Raman spectroscopy and magneto-photoluminescence spectroscopy were performed to show alternation of the magnetic properties of the sample under mechanical deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.