Abstract

Effects of a benzotriazole (BTA)-based small molecule, BTA2, as the third component on the charge carrier generation and recombination behavior of poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithio-phene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno [3,4-b]thiophenediyl]] (PTB7): [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) organic solar cells (OSCs) were investigated by optical simulation of a transfer matrix model (TMM), photo-induced charge extraction by linearly increasing voltage (photo-CELIV) technique, atomic force microscope (AFM), and the Onsager-Braun model analysis. BTA2 is an A2-A1-D-A1-A2-type non-fullerene small molecule with thiazolidine-2,4-dione, BTA, and indacenodithiophene as the terminal acceptor (A2), bridge acceptor (A1), and central donor (D), respectively. The short-circuit current density of the OSCs with BTA2 can be enhanced significantly owing to a complementary absorption spectrum. The optical simulation of TMM shows that the ternary OSCs exhibit higher internal absorption than the traditional binary OSCs without BTA2, resulting in more photogenerated excitons in the ternary OSCs. The photo-CELIV investigation indicates that the ternary OSCs suffer higher charge trap-limited bimolecular recombination than the binary OSCs. AFM images show that BTA2 aggravates the phase separation between the donor and the acceptor, which is disadvantageous to charge carrier transport. The Onsager-Braun model analysis confirms that despite the charge collection efficiency of the ternary OSCs being lower than that of the binary OSCs, the optimized photon absorption and exciton generation processes of the ternary OSCs achieve an increase in photogenerated current and thus improve power conversion efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call