Abstract
Many studies have found that bioaerosols are harmful to humans. In particular, infectious viruses, such as the virus that causes COVID-19, are increasing. Therefore, the research on methods for reducing bioaerosols is becoming progressively more important. The purpose of this study was to improve the existing electrostatic precipitator, which generates high concentrations of ozone, by reducing bioaerosols effectively without significant ozone production. A brush-type ionizer was studied as a replacement for the existing electrostatic precipitator. The study, which was conducted at the laboratory scale, determined the amounts of ions generated with different ionizer materials (carbon, copper, and stainless steel) and voltages (−1, −2, and −3 kV), as well as it compared the virus inactivation efficiency under the various conditions. As a result, about two million ions were produced when a voltage of −3 kV was applied to all of the materials, and 99.9 ± 0.2% and 98.8 ± 0.6% virus inactivation efficiencies were confirmed in the cases of carbon and copper, respectively. In addition, an assessment of the effect of flow velocity confirmed that the inactivation efficiency decreased as the flow velocity increased. However, the results for the flow velocities of 0.2 and 0.4 m/s had similar trends. Therefore, this system can be used with flow velocities up to 0.4 m/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.