Abstract
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on feeding behavior, dry matter intake (DMI), and energy utilization were evaluated with eight multiparous high producing dairy cows in a duplicated 4 × 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). Both low NDF diets and bm3 corn silage treatments increased DMI and milk yield. However, an interaction between corn silage treatment and dietary NDF content was observed for meal size and for interval between meals, implying that different mechanisms regulating DMI dominate depending on the fermentation characteristics of diets. The bm3 treatment depressed milk fat concentration when fed in a low NDF diet. The bm3 corn silage increased solids-corrected milk yield, but did not affect daily body weight gain compared with control, whereas low NDF diets increased daily body weight gain, but did not affect solids-corrected milk yield compared to high NDF diets. Both bm3 treatments and low NDF diets reduced ruminal pH, but low NDF treatments increased fluctuation of ruminal pH and bm3 treatments did not. Feeding bm3 corn silage increased the energy utilized for milk production, possibly because of a consistent supply of metabolic fuels from the rumen. The beneficial effects of bm3 corn silage on productivity of lactating cows were greater for the cows fed a high NDF diet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.