Abstract

In this work, isotropic pitch precursors are synthesized by the bromination-debromination method with ethylene bottom oil (EO) as the raw material and bromine as the initiator for pitch formation and condensation reactions. The aggregation structure, molecular weight distribution, and molecular structure of isotropic pitch precursors are characterized by thermal mechanical analyzer (TMA), MALDI TOF-MS, and 13C NMR, respectively, for revealing the mechanism of synthesis of isotropic pitch precursors. The results show that at low bromine concentrations, polycyclic aromatic hydrocarbons (PAHs) were mainly ordered in cross-linked structures by bromination-debromination through substitution reactions of side chains. The condensed reactivity can be improved by the effect of bromine, meaning that condensation reaction was aggravated by the method of bromination-dehydrobromination. In the presence of excess bromine, the cross-linked stereo structure of PAHs changed to the planar structure of condensed PAHs, which was not conducive to the subsequent spinning and preparation of carbon fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.