Abstract

We synthesize three fused-ring electron acceptors (m-ITBr, o-ITBr and IT-2Br) based on indacenodithieno[3,2-b]thiophene as the core unit and 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile with 1 or 2 bromine substituents as the end-capped unit. The effects of bromine atom number and substituted position on molecular film absorption, energy level, photovoltaic performance, charge transport and film morphology are systematically carried out. Compared with ITIC, m-ITBr, o-ITBr and IT-2Br all show red-shifted film absorption (550–750 nm) and downshifted highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The PM6:IT-2Br based devices exhibit power conversion efficiency (PCE) of up to 12.92%, which is much higher than the reference devices based on ITIC (8.98%). In addition, all three brominated devices achieve high efficiency over 11% (11.84% for m-ITBr devices and 11.14% for o-ITBr devices). Herein, it is also concluded that bromination on terminal groups plays a vital role in enhancing the photovoltaic performance of IDTT-based FREAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.