Abstract

High quantum yield (1.4 mol Es−1) of hydroxyl radicals (∙OH) from photolysis of chlorine under typical disinfection conditions indicates the potential of UV/chlorine coexposure in serving as both disinfection and advanced oxidation processes (AOP). In this study, photolysis of chlorine and bromine was explored in buffer and simulated natural water solutions under low-pressure UV (LPUV) and medium-pressure UV (MPUV) lamps. At pH 6.5 and 8.5, the quantum yields of bromine photolysis were 3.8 and 0.6 for MPUV, and 4.4 and 0.8 for LPUV, respectively. At pH 6.5, the photolysis of bromine was faster than that of chlorine under either MPUV or LPUV source, while at a higher pH of 8.5, the contrary was found. For all conditions tested, the presence of bromide did not significantly change the observed photolysis rate of total free halogen during the UV/chlorine process in the presence or absence of natural organic matter. Upon UV irradiation, chlorine always produces higher ∙OH concentration than bromine does. The presence of bromide results in considerable decrease of ∙OH concentration at pH 6.5, compared to that obtained from the UV/chlorine process in the absence of bromide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.