Abstract

Ganglioside GT3 is the precursor of c-series gangliosides. It is synthesized by sialylation of GD3 and is expressed in nervous tissue of birds and mammals at early stages of development. In this study we examined the sub-Golgi location of GT3 synthesis and the mechanism of its transport from the site of synthesis to the plasma membrane in chicken embryo retina cells in culture. Neural retina cells from 10-day-old chick embryo were cultured with [3H]galactose in the absence (control cells) or in the presence of 1 micrograms/ml brefeldin A (BFA). At the end of the labeling period, the fraction of labeled gangliosides transported to the plasma membrane was determined. For this, cells were treated with C. perfringens neuraminidase in conditions to desialylate only those gangliosides that were transported to the plasma membrane and consequently accessible to the enzyme. After neuraminidase treatment of cells, gangliosides were isolated, purified, and the pattern of radioactivity analyzed by HPTLC-fluorography. It was found that BFA blocked the synthesis of complex gangliosides without affecting the synthesis of GM3, GD3, and GT3. Furthermore, in BFA-treated cells, GM3, GD3, and GT3 were protected from the action of added neuraminidase, indicating an intracellular localization and, hence, an inhibition of their transport to the plasma membrane. The results indicate that synthesis of the first intermediates of a-, b-, and c- series gangliosides occurs in a proximal Golgi compartment and that the proximal Golgi-synthesized gangliosides (GM3, GD3, and GT3) use a transport mechanism that is dependent on ADP ribosylation factor and coatomer proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call