Abstract

Highly branched poly(β-amino ester)s (HPAEs) have emerged as one type of the most viable non-viral gene delivery vectors, both in vitro and in vivo. However, the effects of different branching strategies on the gene transfection performance have not yet been explored. Here, using triacrylate (B3) and diamine (B4) as the branching monomers, a series of HPAEs were synthesized via the “A2 + B3 + C2” and “A2 + B4 + C2” strategies, respectively. Results show that the branching strategy plays a pivotal role in dictating the physiological properties of the HPAE/DNA polyplexes and thus leads to obviously different cell viability and transfection efficiency. Comparatively, HPAEs synthesized via the “A2 + B3 + C2” branching strategy are more favorable for DNA transfection than that synthesized via the “A2 + B4 + C2” strategy. This study may provide new insights into the development of HPAEs based non-viral DNA delivery system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.