Abstract

In this study, the effects of three different viscous damper configurations, chevron, diagonal and toggle, as well as brace stiffness on the performance of brace-viscous damper system in various steel frams under different earthquake records were investigated. A finite element software, ANSYS, is exploited to develop the numerical models. To verify the numerical simulations, their results were compared with those of the experimental studies in the literature. The results show the reduction in the base shear force given by the toggle configuration is larger than that due to the chevron and diagonal configurations. Regarding the brace stiffness (area), for a reference damping coefficient of 500 N.m/s, a 54% increase in the brace area (from 42 to 91.8 mm2) results in a 21.26, 38.61, and 17.57% reduction in the structure displacement response for the diagonal, chevron, and toggle configurations, respectively. Further, using the results of the numerical simulations, we proposed the spatially-optimized distribution of the brace-viscous damper system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.