Abstract
Effects of periodic and Neumann boundary conditions on a nonlocal prey–predator model are investigated. Two types of kernel functions with finite supports are used to characterize the nonlocal interactions. These kernel functions are modified to handle the Neumann boundary condition. Numerical techniques to find the Turing and spatial-Hopf thresholds for Neumann boundary condition are also described. For a fixed range of nonlocal interaction with a given kernel function, Turing bifurcation curves corresponding to both the boundary conditions are close to each other. The same is true for the spatial-Hopf bifurcation curves too. However, the nonlinear solutions inside the Turing domain as well as spatial-Hopf domain depend on the boundary condition. Thus, boundary conditions play important roles in a nonlocal model of prey-predator interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.