Abstract
Tendon lacerations are most commonly managed with surgical repair. Postoperative complications such as adhesions and ruptures often occur with immobilization. Early postoperative mobilization is therefore advised to minimize complications and time required to return to daily life. The aim of this study was to evaluate whether botulinum neurotoxin type-A (BoNT-A) can be used to enhance healing and prevent rupture in mobilized animals with Achilles tenotomy. Twenty-seven rabbits were divided into 3 groups, namely, I, II, and III, after surgical 1-sided Achilles tenotomy and end-to-end repair. The control group for biomechanical comparisons consisted of randomly selected contralateral (unoperated) healthy Achilles tendons. Group I received BoNT-A (4 U/kg) injection into the calf muscles. One week later, electromyographical confirmation was performed to establish the effects of injection. Surgery was then performed. Animals in the second group (n = 9, group II) were immobilized with a cast postoperatively. The third group (n = 9, group III) was mobilized immediately with no cast or BoNT-A. Tendons were harvested and gap formation or ruptures as well as strength of the repaired tendon were assessed 6 weeks after surgery. Achilles tendons healed in all animals injected with BoNT-A, whereas all were ruptured in group III. All Achilles tendons of animals in groups I and II healed. However, group I repaired tendons were biomechanically equivalent to healthy tendons, whereas group II repaired tendons demonstrated significantly decreased tensile strength (P = 0.009). The present study suggests that local injection of BoNT-A can be used for treatment of tendon rupture and may replace the use of cast for immobilization. However, further studies are needed to determine whether BoNT-A injection can have a beneficial effect on the healing of tendon repairs in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.