Abstract

Inflammatory bowel diseases, which consist of chronic inflammatory conditions of the colon and the small intestine, are considered a global disease of our modern society. Recently, the interest toward the use of herbal therapies for the management of inflammatory bowel diseases has increased because of their effectiveness and favourable safety profile, compared to conventional drugs. Boswellia serrata Roxb. and Curcuma longa L. are amongst the most promising herbal drugs, however, their clinical use in inflammatory bowel diseases is limited and little is known on their mechanism of action. The aim of this work was to investigate the effects of two phytochemically characterized extracts of B. serrata and C. longa in an in vitro model of intestinal inflammation. Their impact on cytokine release and reactive oxygen species production, as well as the maintenance of the intestinal barrier function and on intestinal mucosa immune cells infiltration, has been evaluated. The extracts showed a good protective effect on the intestinal epithelium at 1 µg/mL, with TEER values increasing by approximately 1.5 fold, compared to LPS-stimulated cells. C. longa showed an anti-inflammatory mechanism of action, reducing IL-8, TNF-α and IL-6 production by approximately 30%, 25% and 40%, respectively, compared to the inflammatory stimuli. B. serrata action was linked to its antioxidant effect, with ROS production being reduced by 25%, compared to H2O2-stimulated Caco-2 cells. C. longa and B. serrata resulted to be promising agents for the management of inflammatory bowel diseases by modulating in vitro parameters which have been identified in the clinical conditions.

Highlights

  • Inflammatory bowel diseases (IBDs) are a group of diseases very common in modern society, correlated with strong inflammatory conditions of the colon and small intestine [1]

  • Boswellia serrata Roxb. and Curcuma longa L. are amongst the most promising herbal drugs, their clinical use in inflammatory bowel diseases is limited and little is known on their mechanism of action

  • The same sample was more accurately analysed by Catanzaro and colleagues [29], who reported that boswellic acids in Boswellia serrata Roxb. gum resin (BOS) was 39%, being 11-keto-β-boswellic acid (KBA) the main single constituent (5.02%) and acetyl-11-keto-β-boswellic acid (AKBA) being 2.71%

Read more

Summary

Introduction

Inflammatory bowel diseases (IBDs) are a group of diseases very common in modern society, correlated with strong inflammatory conditions of the colon and small intestine [1]. IBDs are characterized by uncontrolled immune activation against microorganisms which are present in the gut. Mast cells are thought to be critically involved in IBDs pathogenesis, since they are found just beneath the intestinal mucosal barrier, where they can be activated by microbial antigens. These cells can potentially contribute to IBDs through their effects on immune-regulation [5,6]. Some of the conventional drug used for the management of IBD, such as 5-aminosalycilic acid, corticosteroids and even methotrexate, are considered to be effective, at least in part, by acting on mast cells [8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call