Abstract

In this study, CoCrMo alloy was boronized at 950 °C for 2, 4, 6 and 8 h, respectively. The boronized samples were characterized by scanning electron microscopy, X-ray diffraction, microhardness tester and ring-on-block wear tester. X-ray diffraction studies showed the boride layer formed at 950 °C for 2–8 h consisted of the phases Co 2B and CrB. A large number of pores formed in diffusion zone were probably attributed to the Kirkendall effect. Depending on boronizing time, the thickness of boride layer ranged from 4 to 11 μm. The excellent wear resistance of the boronized CoCrMo alloy was attributed to the high surface hardness of the Co 2B and CrB under dry-sliding conditions when compared to the as-received state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.