Abstract
Microalloying with 0.01 at.% B decreases the range of growth speeds over which a well-aligned fibrous eutectic microstructure can be obtained in directionally solidified NiAl–Mo. Compared to the undoped alloy, the size/spacing of the Mo fibers is larger, and the fiber density smaller, in the B-doped alloy. Annealing at 1400 °C coarsens the fibers by a mechanism involving fault migration and annihilation driven by diffusion along the fiber–matrix interface. The coarsening kinetics, given by the decrease in Mo fiber density with time, is exponential, and microalloying with B decreases the coarsening rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.