Abstract

Employing a first-principles method in combination with the empirical criterions, we have investigated the site preference of boron (B) and its effect on the mechanical properties of the binary-phase TiAl–Ti3Al alloy. It is found that B energetically prefers to occupy the Ti-rich octahedral interstitial site, because B is more favorable to bond with Ti in comparison with Al. The occupancy tendency of B in the TiAl–Ti3Al alloy is the TiAl/Ti3Al interface [Formula: see text] Ti3Al [Formula: see text] TiAl, thus B tends to segregate into the binary-phase interface in the TiAl–Ti3Al alloy. The charge density difference shows that B at the TiAl–Ti3Al interface will form strong B–Ti bonds and weak B–Al bonds, leading to the significant increasing of the cleavage energy [Formula: see text] and the unstable stacking fault energy [Formula: see text]. This indicates that the presence of B will strengthen the TiAl/Ti3Al interface, but block its mobility. Further, the ratio of [Formula: see text]/[Formula: see text] of the B-doped system is 4.63%, 8.19% lower than that of the clean system. Based on the empirical criterions, B will have a negative effect on the ductility of the TiAl–Ti3Al alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.