Abstract

Boron containing MoSi2 is a promising material for applications at high temperature, but the oxidation mechanism is still unclear. In this work, the high temperature (1100 °C) oxidation of B doped MoSi2 in synthetic air has been investigated. A (boro)silicate layer is formed on the surface of the alloy, which features a mixture of amorphous SiO2 and cristobalite. After an initial transient period, the oxidation kinetics follows a parabolic growth rate law. The growth rate constant of the oxide layer is enhanced by the boron in the alloy by 90 % per at.% B. The increase in growth rate is associated with boron mitigating the formation of cristobalite thereby promoting the formation of amorphous SiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.