Abstract
In this study, the effect of different surface treatments was investigated to improve the friction and wear properties of DIN 32CrMoV12-10 steel. For this purpose, chrome plating, boriding, nitrocarburizing+oxidation, nitriding+oxidation processes were applied to the samples prepared from DIN 32CrMoV12-10 steel. After the procedures, the structural, morphological and mechanical properties of the samples were determined by XRD, SEM, hardness measurement device and profilometer. In order to determine the tribological properties of the samples, pin-on-flat wear tests were carried out. It was observed that a chromium layer was formed on the surface of the material after chrome plating. In boronized samples, it was observed that a boron layer was formed on the surface of the material and a diffusion layer was formed below it. The formed layers contain Fe2B and FeB phases. In nitrocarburized+oxidized and nitrided+oxidized samples, it was observed that the oxide layer on the material surface, a white layer just below it and a diffusion zone extending to the inner parts of the material were formed. The oxide layer formed on the surface consists of Fe2O3 and Fe3O4 phases, while the white layer and diffusion layers consist of ε-Fe2-3N and γ'-Fe4N phases. Due to the increased plastic deformation resistance with oxide layers, hard nitride phases and diffusion layers, the highest wear resistance was obtained from nitrocarburized+oxidized and nitrided+oxidized samples.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.