Abstract

The aim was to study the effects of boric acid (BA) and 2-aminoethoxydiphenyl borate (2-APB) on oxidative stress and inflammation in an experimental necrotizing enterocolitis (NEC) rat model. Experimental NEC was induced in 40 newborn Sprague-Dawley rats by asphyxia and hypothermia applied in 3 consecutive days. Rats were subdivided into 4 subgroups as NEC, NEC+BA, NEC+2-APB, and controls. BA and 2-APB were applied daily before the procedure. Serum total antioxidant status, superoxide dismutase (SOD), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and erythrocyte glutathione (GSH) levels were measured. Pathological changes for NEC in intestinal architecture were evaluated by a grading system. Pretreatment with BA and 2-APB resulted in a decrease in NEC incidence. In all of the NEC groups, decreased serum levels of GSH and SOD were measured. Boron limited GSH consumption but had no effect on SOD levels. Total antioxidant status levels were not statistically different among groups. In our experimental NEC model, BA, but not 2-APB, prevented the increase of TNF-α. Pretreatment with BA and 2-APB downregulated the activity levels of IL-6 in NEC. In the experimental NEC model, BA and 2-APB partly prevent NEC formation, modulate the oxidative stress parameters, bring a significant decrease in GSH consumption, and enhance the antioxidant defense mechanism, but have no effect on total antioxidant status. BA inhibits the hypoxia and hypothermia-induced increase in both IL-6 and TNF-a, but 2-APB only in IL-6. Boron may be beneficial in preventing NEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call