Abstract

Osteoblast differentiation is controlled by multiple transcription factors, Runx2, AJ18, Osterix, Dlx5 and Msx2. The mechanisms of regulation of AJ18 mRNA expression by the transforming growth factor beta (TGF-beta) superfamily remain poorly understood. However, it is known that BMP-2 induces differentiation of C26 cells into more mature osteoblastic cells. The present study, using Northern blot and real-time reverse transcription polymerase chain reaction analyses, investigated the effects of bone morphogenetic protein-2 (BMP-2) and TGF-beta1 on mRNA expression of AJ18 and Runx2 in a clonal osteoblast precursor cell line ROB-C26 (C26) cultured for 3, 6 or 9 days in the presence or absence of BMP-2. Although mRNA expression of Osterix and bone sialoprotein (BSP) was undetectable in the C26 culture, BMP-2 induced Osterix expression on days 3-9, but not BSP expression. BMP-2 also stimulated significantly Dlx5 expression on days 3-9, Msx2 and matrix Gla protein expressions on days 3 and 6, Runx2, alkaline phosphatase and osteocalcin expressions on days 6 and 9 in the culture. Furthermore, BMP-2 increased significantly Smad5 mRNA in the culture on day 3, indicating BMP-2 involvement in the regulation of Smad5 mRNA expression. In contrast, the inhibitory effects of BMP-2 on AJ18 mRNA expression were significant on days 3-9, indicating that a decrease in AJ18 mRNA expression is essential for the increased osteoblastic differentiation. Furthermore, TGF-beta1 (0, 0.1, 1.0 and 5.0 ng/ml) treatment of C26 cells cultured for 6 days in the presence or absence of BMP-2 for 24h stimulated mRNA levels of AJ18 and Runx2, maximal stimulation occurring principally at 1.0 ng/ml. These observations indicate that the expression of AJ18 and Runx2 mRNAs in C26 cells is under the control of BMP-2 and TGF-beta1, which exert different effects on AJ18 mRNA expression, but are potent stimulators of Runx2 mRNA expression during osteoblast differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.