Abstract

The ground-state properties and quantum phase transitions (QPTs) of the one-dimensional bond-alternative XXZ model are investigated by the infinite time-evolving block decimation (iTEBD) method. The bond-alternative effects on its ground-state phase diagram are discussed in detail. Once the bond alternation is taken into account, the antiferromagnetic phase (Δ > 1) will be destroyed at a given critical point and change into a disordered phase without nonlocal string order. The QPT is shown to be second-order, and the whole phase diagram is provided. For the ferromagnetic phase region (Δ < −1), the critical point rc always equals 1 (independent of Δ), and the QPT for this case is shown to be first-order. The dimerized Heisenberg model is also discussed, and two disordered phases can be distinguished by with or without nonlocal string orders. Both the bipartite entanglement and the fidelity per site, as two kinds of model-independent measures, are capable of describing all the QPTs in such a quantum model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call