Abstract

Ametropia is one of the most common ocular disorders worldwide, to which almost half of visual impairments are attributed. Growing evidence has linked the development of ametropia with ambient light, including blue light, which is ubiquitous in our surroundings and has the highest photonic energy among the visible spectrum. However, the underlying mechanism of blue light-mediated ametropia remains controversial and unclear. In the present study, our data demonstrated that exposure of the retinal pigment epithelium (RPE) to blue light elevated the levels of the vital ametropia-related factor type Ⅰ collagen (COL1) via β-catenin inhibition in scleral fibroblasts, leading to axial ametropia (hyperopic shift). Herein, our study provides evidence for the vital role of blue light-induced RPE dysfunction in the process of blue light-mediated ametropia, providing intriguing insights into ametropic aetiology and pathology by proposing a link among blue light, RPE dysfunction and ametropia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.