Abstract

BackgroundPlasma resuscitation ameliorates hyperfibrinolysis (HF) and trauma-induced coagulopathy (TIC). However, the use of other blood components to reduce HF has not been evaluated. Therefore, our aim was to determine the effect of individual blood components and whole blood (WB) on an in vitro model of severe HF/TIC. MethodsA “TIC” solution was made with 1:1 dilution of WB with saline and exacerbated with tissue plasminogen activator (tPA). Components were added in proportions equivalent to the thromboelastography (TEG) based goal-directed resuscitation used at our institution. Whole blood was added at proportions equal to what has been transfused in injured patients. Samples (n = 9) underwent citrated native and tPA-challenge (75 ng/mL) TEG with analysis of R-time, angle, MA, and LY30. Statistical analyses were completed employing the nonparametric Kruskal–Wallis and Dunn’s multiple comparisons tests. ResultsTIC solution, when compared to control, had a decrease in clot strength (MA 41 mm versus 51.5 mm, P < 0.01). The addition of tPA resulted in a severe coagulopathy (MA 24.5 mm versus 41 mm and LY30 52.8% versus 2.4%, P < 0.03 for all). The addition of 4U of WB improved clot strength compared to TIC + tPA (P = 0.03). No individual blood component resulted in improved fibrinolysis (P > 0.7). Cryoprecipitate improved R-time (7.5 versus 11.9 min, P < 0.01), angle (56.8 versus 30.2°) and MA (49 mm versus 36.25 mm), while platelets improved MA (44 mm versus 36.25 mm) compared to TIC + tPA (P < 0.03 for all). ConclusionsNo single blood component or volume of whole blood led to attenuation of tPA-mediated fibrinolysis in an in vitro model of TIC. Cryoprecipitate was the most effective at improving coagulation function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call