Abstract
The present study investigates the effects of bleed flow on heat/mass transfer and pressure drop in a rotating channel with transverse rib turbulators. The hydraulic diameter (Dh) of the square channel is 40.0 mm. The bleed holes are located between the rib turburators on the leading surface and the hole diameter (d) is 4.5 mm. The square rib turbulators are installed on both leading and trailing surface. The rib-to-rib pitch (p) is 10.0 times of the rib height (e) and the rib height-to-hydraulic diameter ratio (e/Dh) is 0.055. The tests were conducted at various rotation numbers (0, 0.2, 0.4), while the Reynolds number and the rate of bleed flow to main flow were fixed at 10,000 and 10%, respectively. A naphthalene sublimation method was employed to determine the detailed local heat transfer coefficients using the heat/mass transfer analogy. The results suggest that for a rotating ribbed passage with bleed flow of BR = 0.1, the heat/mass transfer on the leading surface is dominantly affected by rib turbulators and the secondary flow induced by rotation rather than bleed flow. The heat/mass transfer on the trailing surface decreases due to the diminution of main flow. The results also show that the friction factor decreases with bleed flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.