Abstract

As mass coral bleaching events become more frequent, it is increasingly important to elucidate the factors underlying coral susceptibility and survival. We measured photosynthesis, respiration, and O2 concentration at the coral tissue surface, Symbiodiniaceae genotypes, and energy metabolic enzyme activities in Agaricia agaricites and Orbicella franksi throughout experimentally-induced thermal bleaching (+3 °C). A. agaricites colonies started to bleach two days into the thermal treatment and were fully bleached between Days 19–31. In contrast, O. franksi colonies only started to bleach on Day 12 and five colonies fully bleached between Days 24–38 while the remining three colonies took up 55 days. Both species experienced decreased photosynthesis and respiration rates as bleaching progressed. As a result, daytime O2 concentration at the coral surface shifted from hyperoxia in unbleached corals to normoxia in partially bleached corals, and to near hypoxia in fully bleached corals. Additionally, nighttime tissue surface O2 concentration shifted from hypoxia to normoxia, likely resulting from decreased symbiotic algae density, respiration, and photosynthates that fuel coral aerobic respiration. Genetic profiling of internal transcribed spacer 2 (ITS2) revealed differences in Symbiodiniaceae clade proportions between control and bleached colonies. Activity levels of energy metabolic enzymes did not significantly vary between control and bleached A. agaricites, but malate dehydrogenase and strombine dehydrogenase activities were significantly higher in bleached O. franksi colonies compared to controls. These differences were driven by the three O. franksi colonies that took the longest to bleach and contained >98 % Durusdinium sp. D1. The shifts in O2 dynamics within the microhabitat of bleached corals may have important implications for the metabolism of the coral holobiont while the changes in Symbiodiniaceae ITS2 profile and the upregulation of energy metabolic enzymes identify a potential factor contributing to bleaching dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.