Abstract

Black holes are one of nature's greatest mysteries. For years, these celestial bodies have evaded scientists due to their intense gravity and extreme density. A specific area of black hole research that is overlooked is how these cosmic bodies affect the space-time continuum. Developing a complete understanding of space-time in and around black holes is essential for future research relating to black holes and combining the two great theories of this generation: general relativity and quantum mechanics. This paper aims to analyze how the space-time continuum is distorted by black holes and explain the applications that space-time around black holes has to modern physics. It first develops an understanding of space-time linkage and curvature through Einstein’s theories of relativity and presents the geometry of space-time as predicted by Minkowski’s equation. When inside a black hole, space and time essentially trade places so that the flow of time causes matter to be drawn within a black hole. As one explores further toward the centre of a black hole, curvature increases until it is predicted by general relativity to reach a gravitational singularity where density becomes infinite, and the laws of space-time break down. In the paper, the discrepancy between general relativity and quantum mechanics is explored through Hawking Radiation and the theoretical singularity at a black hole's centre. A combination of written explanations, math models, and diagrams are used to communicate how the space-time continuum is affected by black holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call