Abstract

Zoledronic acid (ZA), an FDA approved bisphosphonate (BP) medicine, is widely used for the treatment of osteoclast-related bone loss diseases [1]. Our previous study has found that systemic administration of ZA could dramatically suppress the development of post-traumatic osteoarthritis (PTOA) in the DMM (destabilization of the medial meniscus) mouse model, a model recapitulating the altered joint loading associated with PTOA [2]. This finding is consistent with a few similar studies using different animal models [3]. However, little is known about the cellular and biochemical mechanisms of BP mediated chondro-protection in PTOA pathogenesis. Studies have shown that PTOA often initiates from the apoptosis and altered metabolism of cartilage chondrocytes. In this study, we will investigate the direct effects of ZA on the metabolisms of chondrocytes using long-term in vitro culture of cartilage allografts. As one of the earliest responses of chondrocytes to mechanical stimulation, intracellular calcium ([Ca 2+] i) signaling is the upstream of numerous mechanotransduction pathways [4]. We hypothesize that the chondro-protective mechanisms of ZA could be represented by the characteristics of [Ca 2+] i signaling of in situ chondrocytes. Our specific aims were to: (i) compare the in situ spontaneous [Ca 2+] i responses of chondrocytes cultured in non-ZA and ZA supplemented environments, and (ii) compare the biomechanical properties of cartilage allografts under the two culture conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.