Abstract

W18O49 has been studied by means of ab initio techniques in the framework of the density functional theory using the onsite Hubbard-U correction applied to the W-d states as well as using the hybrid potential. The existence of bipolarons is found to be an intrinsic feature of this oxide resulting in the presence of different oxidation states of W atoms (W6+ and W5+) and in the co-existence of localized and delocalized electrons. We also discuss possible switching from the W6+ to W5+ and from the W5+ to W4+ oxidation states in the presence of an O vacancy. It appears that O vacancy formation does not cause any additional charge localization at W sites but solely contributes to delocalized electrons. The calculated absorption and reflection coefficients manifest a transparency window in the visible region. At the same time, sizable absorption, occurring due to the presence of free carriers, is detected in the far and mid infrared regions. Additionally, in the near infrared region we confirm and explain an experimentally observed shielding effect originating from transitions involving the localized bipolaronic states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.