Abstract

1. Oxygen uptake and denitrification were determined in two bioturbated sediments from a eutrophic lake in southern Sweden. In laboratory mesocosms, an organic profundal sediment was incubated with Chironomus plumosus L. and a sandy littoral sediment with an organic‐rich top layer was incubated with Polypedilum sp. Both species of chironomid are sediment tube‐dwelling.2. Oxygen consumption, expressed per gram of larval dry weight, was enhanced to the same extent by the larvae in both sediments. Measurements of the respiration rate of individual larvae revealed that the respiration per gram dry weight of the smaller Polypedilum sp. was more than three times higher than that of C. plumosus.3. Denitrification was measured using the ‘nitrogen isotope pairing’ technique. In the organic sediment, denitrification of nitrate from the water phase (dw) and denitrification of nitrate from coupled nitrification (dn) were each correlated with the biomass of C. plumosus. In the sandy sediment, dw was correlated with the biomass of Polypedilum sp., while dn did not show any correlation with Polypedilum sp.4. Oxygen uptake in the organic sediment was increased by a factor of 2.5, dw 5‐fold and dn 2.5‐fold at a biomass of 10 g m–2 dry weight of C. plumosus. The same biomass of Polypedilum sp. in the sandy sediment resulted in a 2‐fold stimulation of oxygen uptake and a 3‐fold stimulation of dw, while dn was not affected. These differences in stimulation between oxygen uptake and denitrification by the larvae in the sediments suggest that the stimulation pattern cannot be explained by simple extension of the sediment surface. The burrows evidently reduce the distance between the nitrate source in the water column and the denitrifiers in the anoxic zones.5. This study indicates that bioturbation by macrofauna elements can have a great impact on denitrification in lake sediments, and that different organisms can influence nitrogen turnover in specific ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.